您好,欢迎来到三六零分类信息网!老站,搜索引擎当天收录,欢迎发信息
免费发信息

工业4.0的发展方向及层次架构

2024/4/25 14:11:26发布10次查看
1、工业4.0的概念及内涵
工业4.0是什么?工业4.0的概念是德国于2013年提出,随后被上升至德国国家创新战略之一,是德国20个面向2020年的科技战略之一。在2013年汉诺威展会上,德国教研部、科技部、西门子、博世等联合推出了工业4.0。目前它仅仅是一个愿景计划。
工业4.0的概念目前仍然是相对模糊的,可以被理解为一个大的生态系统。从供应商到制造车间,再到下游客户,全过程实现智能化和网络化。工厂内部生产过程高度智能化,云技术和大数据贯穿其中,cps赋予设备互联通信,并且可以实现全过程数字管理,形成一个完整的生态链,在这个生态链中,主要的角色有:供应商、企业、工厂、设备、客户等,连接这些角色的是cps系统。
工业4.0的核心是实现三项集成。第一,横向业务集成,整合业务合作伙伴、公司与公司之间、公司与用户之间的主体网络,横向业务集成中主要用到的工具包括crm、scm等;第二,纵向业务网络集成,主要是整合企业内部生产流程之间的信息沟通问题,包括机器设备、供应链系统、生产系统和运营系统等,主要运用的工具包括erp、mes、dcs、scada、hmi等,重点在于实现智能制造的过程;第三,价值链端到端的数字化集成。在这个价值链上,产品从用户需求、创意、设计、制造运行到服务过程,形成对产品的全生命周期管理,主要的工具软件包括cad、pdm和plm等。
工业4.0的基础是网络物理系统(cps),这个概念比此前更广泛,将设备、产品、相关设施、人力等广泛连接成一个网络物理系统。更确切的说,这个系统就是我们所说的制造业的互联网和物联网化。cps从广义上理解,就是一个在环境感知的基础上,深度融合了计算、通信和控制能力的可控、可信、可扩展的网络化物理设备系统,它通过计算进程和物理进程相互影响的反馈循环,实现深度融合和实时交互来增加或扩展新的功能,以安全、可靠、高效和实时的方式监测或者控制一个物理实体。cps的最终目标是实现信息世界和物理世界的完全融合,构建一个可控、可信、可扩展并且安全高效的cps网络,并最终从根本上改变人类构建工程物理系统的方式。
信息物理网络(cps)是虚拟世界和现实世界在工业领域应用中的高度融合,是工厂、机器、生产资料和人通过网络技术的高度联结。cps是工业4.0的实践基础,没有cps的支撑,智能工厂、智能制造都是空中楼阁。
cps与物联网的内在逻辑关系。美国国家科学基金会(nsf)认为,cps将让整个世界互联起来。如同互联网改变了人与人的互动一样,cps将会改变我们与物理世界的互动。海量运算是cps接入设备的普遍特征,因此,接入设备通常具有强大的计算能力。物联网中的物品不具备控制和自治能力,通信也大都发生在物品与服务器之间,因此物品之间无法进行协同。从这个角度来说物联网可以看作cps的一种简约应用,或者说,cps让物联网的定义和概念明晰起来。在物联网中主要是通过rfid与读写器之间的通信,人并没有介入其中。感知在cps中十分重要。
2、工业4.0并没有确定性模式
到目前为止,工业4.0仍然停留在理论化阶段,对工业4.0的理解,可以理解成更高层次的工业制造水平,包含了由集中式控制向分散式增强型控制的基本模式转变,目标是建立一个高度灵活的个性化和数字化的产品与服务的生产模式。在这种模式中,传统的行业界限将消失,并会产生各种新的活动领域和合作形式。创造新价值的过程正在发生改变,产业链分工将被重组。
工业4.0到目前位置并没有确定性的模式。虽然工业4.0强调高度智能,强调无人化或者少人化,但是,实际上在现有的自动化工厂或者数字化工厂,工业机器人、伺服电机、传感器等都已经存在。
西门子、倍福及很多中小企业都宣称自己是工业4.0,但都是结合自身特点而言。例如倍福认为其基于pc的自动化控制技术,无所不能的通讯技术是工业4.0的核心技术,而西门子认为其pia、totalsolution、全寿命周期管理、数字化工厂才是工业4.0的要素。
智能化和数字化是工业4.0的发展方向。现有的自动化工厂或者数字化工厂,工业机器人、伺服、传感器等都已经存在。但这仅仅是基础条件,只有上述设备具备了主动感知环境、产品工艺、操作者水平的变化,主动调整软件和程序,自动适应周围的变化,并根据这些变化不断地学习和优化自己的控制性能,才是讲真正的智能制造。工业4.0是未来智能化、网络化世界的一部分,并没有确定的模式,建议关注行业里面企业的向工业4.0方向发生的变化,比如更加智能化,而不是以静态的标准衡量。
3、工业4.0的发展路径:从数字化工厂到智慧工厂
智慧化和网络化是未来工业4.0的未来发展方向。智慧工厂是工业4.0的最终形态,实现智慧工厂的前提是数字化工厂,而数字化工厂又是以数字化车间为基础的。
数字化工厂(df)是以产品全生命周期的相关数据为基础,在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式,是现代数字制造技术与计算机仿真技术相结合的产物,同时具有其鲜明的特征。它的出现给基础制造业注入了新的活力,主要作为沟通产品设计和产品制造之间的桥梁。
智能工厂中,嵌入了具有设计功能和产品生命周期管理功能的plm软件,制造执行系统mes以及供应链管理系统scm等,工厂内部执行系统以cps驱动底层硬件设备,车间内部通过工业以太网或者更高级的网络结构实现互通互联。工厂的决策、生产、流通环节更加智能化。
应对工业4.0的大趋势,企业可以采取两步走的策略:(1)在工业3.0时代或者工业3.x时代,主要建设以数字化工厂为代表的生产车间。数字化工厂中,包括了plm、erp、mes、tia、logistic建设和数据流集成,实现从产品生命周期和生产生命周期集成整合;(2)在工业4.0的时代,主要以智能化工厂(智慧工厂)为存在载体,在智能工厂中cps的大量应用贯穿在工厂的核心位置,可以实现动态、自主生产模式,通过实时智能化决策,管理复杂的生产,并满足客户个性化需求。
目前走在前列的是西门子等国际传统的智能制造提供商。根据西门子自身的定位,处在工业3.8的位置,目前正在强化和完善数字化工厂在智能制造环节的作用。从硬件设备到软件开发,从工厂内部联网到外部联网,进行全方位的改造。逐步改造和升级的数字化工厂就是未来智能工厂的雏形。
数字化工厂与智能工厂之间是渐进的关系,数字化工厂是实现工业4.0的第一步。在数字化工厂的基础上,基于信息物理融合系统(cps)的智能生产系统就过渡到了智能化工厂。因此,二者的区别不仅仅体现在层次方面,二者的主要建设内容页有极大的区别,数字化工厂重点在于如何实现三项集成,改善质量,控制成本,提高效率等,而智能工厂则更多的强调智能决策,人机交互,虚拟仿真等,可以实现跨企业价值链的业务集成和构建端到端的价值流,关键技术是物联网和cps。
数字化工厂是工业4.0的第一步。主要的建设任务包括:(1)建立网络系统,包括外部互联网、内部工业以太网、无线通讯网络等;(2)建立数据采集与监视控制系统scada,保障各个环节顺利运行;(3)建立纵向和横向集成的业务模型与自组织形式;(4)建立合适的工业级应用软件系统,例如erp、plm、mes和cax等。
西门子在德国的安贝格数字工厂是目前数字化工厂的典范,该工厂从1991年开始建设,2008年数字化工厂集成完成,完成了首条混线生产线,2013年导入西门子的teamcenter等产品,到如今,该工厂已经拥有高度数字化的生产流程,能灵活实现小批量、多层次生产。其工厂的生产特征及关键参数如下:
(1)24小时的生产交货期(从工厂收到订单到产品生产出来后,配送到中央仓库);
(2)一秒钟生产一个产品;
(3)年产30亿件零部件,每年生产150万平方米的pcb板;
(4)2014年每100万件产品残次品率仅11.5件;
(5)质量水平达到99.9989%;
(6)生产线可靠性达到99%;
(7)可追溯性达到100%;
(8)生产计划已经排到2018年,在不改变现有人员数量级生产面积的基础上产能将增加3倍;
目前,安贝格工厂的生产过程的自动化率到达75%,但更为关键的是除了生产过程的自动化,安贝格更为关注的是物流的自动化与信息的自动化与生产过程的自动化项匹配。工厂广泛通过simatic平台,每条线实现了超过1000个站点的数据采集。而这些均使用西门子自己的产品(ewa的理念是:让我们的产品来自动生产产品:simaticproductssimatic)。实现了生产的透明化,1200名员工都可以看到实时的生产状态的信息。
ewa为保证质量第一,创新性的提出了dpm-a的指标,即百万出错率,使得ewa的产品质量迅速提升,从上世纪90年代的560百万出错率,下降到现今的十几的水平,ewa近几年的百万出错率分别如下图所示。2014年的11.5百万出错率,相当于质量水平达到了99.9989%。
4、工业4.0的层次架构解析及重要模块
目前对数字化工厂内部的层次架构并没有形成完整的统一标准,根据西门子的数字化工厂的层次架构来看,大致可以分成5个层次:分别是企业层、管理层、操作层、控制层和现场层。不同的层次对应的不同的设备。在企业层中,主要设计产品开发、产品仿真模及企业日常管理,主要包括erp和plm软件;在管理层,承接了plm和erp的部分工能,主要以执行制造为主,主要包括mes软件系统和工厂工程组态;操作层,主要由dcs和scada系统构成,执行mes发出的具体指令;控制层是以plc和hmi为主体的模块构成;最底层的现场层主要是由具体的现场设备构成,包括机器人、机床、泵阀等设备。各个层次之间通过工业通讯网络连接。
除了西门子的数字化工厂的层次架构,研华经过三十多年积累,也逐渐形成了数字工厂的各个模块。其数字化工厂包括四个主要层次,分别是:erp层、mes层、中央监控层、设备层。每个层次之间都有独立的通讯模式。工厂内部总体包括数据采集、工业通讯、嵌入式机器人、i/o板卡高速采集运动控制、人机界面、工控机以及上层软件等七大部分,为企业构建一个完整的智慧工厂解决方案,兼备设施系统、信息化应用系统、设备管理系统、公共安全系统等,建设高效、节能的数字工厂。
结合西门子和研华的数字化工厂层次架构,及我们前期的草根调研情况,我们提出了工业4.0时代数字化工厂的基本层次架构的一般模式,工厂层次分为5层,分别是:
(1)erp层,主要是企业层级的应用,包括产品开发,企业管理等软件系统;
(2)mes层,mes层是企业管理制造和产品生命周期的交叉点,负责具体的制造执行过程,工单生成和车间任务分配等。
(3)通信层,通信层是负责对工厂内部设备之间互联的重要设备,主要的硬件设备包括工业以太网、现场总线、交换机及无线网络系统。通信层涉及到众多通信协议的整合。
(4)工业控制层,与西门子的控制层类似,主要由scada、plc和dcs构成,还包括人机交互界面(hmi),实现对底层设备实施逻辑控制。
(5)设备执行层,主要包括工业机器人、智能机床、伺服系统、泵阀设备、3d打印、机器视觉、传感器等,都是重要的现场执行设备。
在数字化工厂的五个层次中,既包括硬件设备,也包括软件系统。数字化工厂的每个层次都有独立的网络设备、网络连接方式、服务器和数据库。可以形成独立的感知、决策行动,层与层之间的通讯方式也不尽相同。
所以,从数字化工厂的层次架构可以看到,整个智能化过程中有几个非常重要的模块:(1)工业软件模块,工业软件可以涵盖企业层的erp到产品设计层的plm再到制造执行系统mes,甚至是更底层的数据监控软件和控制软件,将构成数字化工厂强大的软件系统;(2)工业通讯模块,工业通讯是连接每层的通讯网络,是实现物理世界与虚拟世界的桥梁,是实现人与人人与机器设备之间通信的桥梁,因此也是智能工厂中不可缺少的模块;(3)执行设备模块,这个模块构成复杂,包括机器人、智能机床、泵阀设备、机器视觉、3d打印等,结合到目前的产业化现状与产业化需求程度,我们认为机器视觉,作为工业机器人的感知功能设备,未来具备较好的发展空间,是执行设备模块中具有发展潜力的模块。
该用户其它信息

VIP推荐

免费发布信息,免费发布B2B信息网站平台 - 三六零分类信息网 沪ICP备09012988号-2
企业名录