理士蓄电池ft12-180实时报价
理士蓄电池安全阀的开阀压力在49kpa以下,闭阀压力在lkpa以上。我国原邮电部标准规定,开阀压力在10-4gkpa,闭阀压力为1-lokpa。 实践证明,开阀压力应稍低些,取10--l5kpa较为合适,而闭阀压力值接近于开阀压力值为好。为了解决理士蓄电池膨胀问题,必须保证氧气复合效率在98%以上。为此,玻璃纤维隔板的空隙率(应大于93%)、基重、吸酸值等指标是十分重要的。采用优质的隔板是保证上述技术指标的基础,设计上充分考虑了壁厚裕量,从而解决蓄电池变形问题。理士蓄电池变形不是突发的,往往有一个渐进的过程。当理士蓄电池在充电容量达到80%左右进入高电压充电区时,在正极板上先析出氧气,氧气通过隔板中的孔到达负极,在负极板上进行氧复活反应,反应过程中会产生热量。当充电容量达到90%时,氧气的产生速度增大,负极开始产生氢气。大量气体的增加使理士蓄电池内压超过开阀压力,安全阀打开,气体逸出,最终表现为失水。随着理士蓄电池循环次数的增加,水分逐渐减少,导致蓄电池出现如下情况:(1)热容减小。在理士蓄电池中热容最大的是水,水损失后,蓄电池热容大大减小,产生的热量使理士蓄电池温度升高很快。(2)某些理士蓄电池出现极板不可逆硫酸盐化,内阻增大,充电时理士蓄电池发热,当温度上升到壳体的临界温度时,产生的热量不能得到充分的散发,将导致理士蓄电池壳体变形。(3)由于失水后理士蓄电池中超细玻璃纤维隔板发生收缩现象,使之与正负极板的附着力变差,内阻增大,充放电过程中发热量加大。经过上述过程,理士蓄电池内部产生的热量只能经过蓄电池槽散失,如散热量小于发热量,即出现温度上升现象。温度上升,使理士蓄电池析气过电位降低,析气量增大,正极大量的氧气通过"通道"。在负极表面反应,发出大量的热量,使温度快速上升,形成恶性循环,即所谓的"热失控",最终温度达到80%以上,即发生变形。一组蓄电池同时变形时,应先做电压检查。如果电压基本正常,还应测量单格电压判断是否短路,无短路则说明变形是过充电产生"热失控"所致。这时应着重检查充电器的充电参数,若充电电压偏高、无过充电保护、浮充电压高或涓流转换点电流低,则应调整或更换充电器。若一组蓄电池(3只)中只有一只或两只变形,其故障的原因有:1)某只理士蓄电池出现极板不可逆硫酸盐化,内阻增大,充电时理士蓄电池发热变形。2)某只理士蓄电池连线时反极造成充电发热变形。3)理士蓄电池荷电不一致,充电时造成某些理士蓄电池过充电引起变形。荷电不一致可能是由于理士蓄电池存在单格短路或由于用户将理士蓄电池试验放电或自放电引起的。理士蓄电池ft12-150 12v150ah特价促销日前,应全国铅酸蓄电池标准化技术委员会的邀请,理士国际作为主要起草单位参与制定了《电动道路车辆用铅酸蓄电池》、《起停车用铅酸蓄电池 技术条件》、《民用铅酸蓄电池安全技术规范》等系列国家标准。理士蓄电池ft12-180实时报价
本次参加铅酸蓄电池系列国家标准的制定,是行业内对我公司技术实力的认可和肯定。未来,我公司将继续顺应行业发展的需要,为铅酸蓄电池企业研发、车企选用铅酸蓄电池提供更多的技术依据和标准,积极推动我国铅酸蓄电池行业健康、快速、可持续地发展。
由于铅酸电池的运行要求比较严格,铅酸电池在偏离了正确的使用条件下运行将造成严重的后果,铅酸电池的运行参数监测变得十分重要的。采用备用电池的场所都是十分重要的部门,失效的电池组起不到电源备份的作用,一旦主电源发生故障,就会造成系统停机,导致巨大的经济、社会损失,及时发现并处理电池失效同样是十分重要的。现有的各种后备电源系统,许多装有各种不同的监测装置。这些装置测试电池组的端电压、电池组电流、电池组运行的环境参数,多具有测试单电池端电压的功能。一般来说,电池组参数监测属于电池运行参数监测,运行参数监测对于保证电池的正确运行状态是重要的,但不能代替电池参数监测。对电池组的安全运行来说,监测到单电池是必须的,由于电池参数的不均匀性,监测电池组的参数是无法知道单电池的运行状态的。众所周知,电池的端电压和电池容量是两个相互独立的参量,由于电池在浮充运行状态下,电池电流很小,单电池的浮充电压也不能有效地反映电池的参数。照我们对电池安全运行的认识,对每只电池内阻的监测是电池安全运行重要的保证,没有这一功能的监测系统对电池安全运行的意义不大。对电池每项参数监测的意义下面进行较详细的讨论。3.1电池组电压监测电池组电压监测可以发现电池组浮充电压不正确、电池组是否被过充电、过放电等事件。3.2单电池电压监测单电池电压监测可以发现单电池浮充电压不正确,单电池是否被过充电、过放电等事件。另外,监测单电池电压还可以发现单电池开路、短路等电池失效事件。3.3电池内阻监测单电池内阻监测是电池监测具革命性意义的进步。众所周知,铅酸蓄电池的端电压并不能反映电池的容量特性,容量严重下降的电池,在整组浮充电的电池中,其浮充电压的区别不足以用来判断电池是否因容量降低而失效,一旦电池组进行放电,这些电池因为充电量少,端电压很快就会跌落,并妨碍电池组的放电性能,这时从电池的端电压上可以很容易的发现他们,但是已经太晚了,电池组在需要备份电源的时候已经起不到备份作用了。利用交流阻抗法、电导法或直流法测量电池的内阻已被公认为是一种迅速而又方便的诊断电池状况的方法。越来越多的研究认为老化电池的内阻和放电能力之间存在着一定的关系。值得注意的是,由于电解液电阻的变化。电池内阻随温度下降而迅速增大。因此,在考虑时间对内阻的影响时,温度是一个重要的影响因素。阀控铅酸电池在设计上是乏酸的,同铅活性物质相比电解液的安时容量较小,因而放电过程常常受电解液制约。对于任何新电池,电池内阻通常不与放电能力成线性关系。电解液浓度、化成的完全程度(尤其是极板表面)、隔板--极板界面接解面积以及压力的细微变化都仅对内阻产生微小的影响,但可能会对放电过程产生很大的影响。所以新电池的内阻和容量都不是一个非常稳定的参量。由于正极板栅的腐蚀、电解液水分的丧失,所有铅酸电池都有一定的使用寿命。在浮充放电使用过程中更为明显。增加正极板栅的质量或减少其腐蚀率都可延长电池的使用寿命。正极板栅是带正极铅活性物质的导电和支撑骨架,腐蚀加大了正极板栅的电阻。其他设计参数,如电解液体积,隔板压缩程度及成分组成、电池壳的透气率、通气孔设计、涂膏的物理化学参数和制造参数都可影响寿命。随着正极板栅的腐蚀和隔板中电解质的耗尽,电池电阻增大而电池容量减少。周期内阻测量可跟踪监测这些变化,并且发现失效电池。在不间断电源中,由于电池检查及放电次数较少,电池容量很可能在两次测试期间就已降到80%额定容量以下。如果采用内阻测试法,可以很容易地发现这些问题并改善系统可靠性。电池内阻的剧升同电池容量的减少有关,尤其是在电池寿命未到80%的时候更为明显。高放电速率下的使用时间似乎对这些因素更为敏感,一般电池内阻增加20~25%时就到了寿命期限。在低放电速率下,电池内阻一般增加20%-35%后寿命才结束。也有一些文章认为电池剩余容量并不能由电池内阻反映出来,他们认为电池容量下降20%对应的电池内阻下降并不明显,当电池的保有容量降到标称容量的60%时电池内阻的变化才可以明确确定。但有一点是得到普遍承认的,那就是电池内阻的增高对应于电池容量的下降,当电池内阻变化可以明确确认的时候,电池应保有60%以上的容量,这样的电池是不能通过电池浮充端电压测量而发现的。所以电池内阻的实时监测比起端电压监测来说所起的作用重要得多的。3.4环境温度监测在使用过程中,温度和电压对电池寿命的影响大。温度的升高和电压的浮动都会加速极板的腐蚀和电解液的消耗,从而减少了电池的有效工作时间和寿命。将温度传感器置于电池表面可以发现电池过热,从而及时发现电池运行过程的异常。3.5充电电流和放电电流监测理士蓄电池ft12-180实时报价过大的充电和放电电流会对电池造成严重的损害,对这些参数的监测可以发现这些问题。3.6事件管理所谓事件管理,就是将电池的监测数据予以归纳和整理,从中发现电池使用不正确事件和可能失效事件,将这些报警事件通过网络传给关心这些事件的部门,同时将这些事件存储保管,以备日后查询。vrla电池虽然号称是免维护电池,不正确的电池使用条件可以显着地对电池造成损害,并使电池的使用寿命缩短,通过监测并控制电池组的电流、浮充电压、使用温度可以使电池工作在正确的使用状态,通过单体电池内阻的监测可以及时准确地发现失效电池,并进而提高了使用vrla电池的系统的使用可靠性。电池容量保持以下因素将影响电池的使用寿命: (1) 重复的深放电,尤其是重复的浅充电后的深放电(2) 使用环境温度过高(3) 过充电,特别是涓涓浮充充电(4) 过大的充电电流.(5) 充好电的电池如果长时间未使用,特别是在高温环境下,将会导致自放电的加速和容量的减少。3.电池的贮存蓄电池应贮存在低温,干燥,通风,清洁的环境中,避免热源、火源、阳光直射,充足电存放,而每3-6个月补充电一次。新的功率变换技术新一代的ups电源采用性能、工艺成熟的igbt功率器件,使功率变换电路的载波频率高达50khz。变换电路频率的提高,使得用于滤波的元件电感、电容大量减少,ups电源的效率、噪声、体积、动态响应特性和精度都有明显的提高。4.功串因数补偿技术新一代ups电源的输入端采用功率因数补偿技术,使得ups电源的输入功率因数达到0.98以上。5.完善的通讯功能新一代ups电源使用计算机管理ups电源,还可以实现异地的监控管理和快速故障诊断服务。目前市面上的ups电源主要分为第一类为后备式;第二类为在线互动式;第三类为在线双变换式;第四类为在线电压补偿式。而评判ups电源的优劣目前主要根据四类ups的技术性能指标有四大类:1.对电网的适应能力;2.满足负载要求的ups常规输出指标;的输出能力和可靠性;4.智能管理和通信功能。第一.要选择大功率ups要慎重考虑ups的输入功率因数和输入电流谐波。双逆变在线式ups,其ac/dc逆变器多为整流滤波电路,它的输入功因数低,输入功率因数低,意味着输入无功功率大,输入谐波电流则*破坏电网,特别是三相大功率ups这两项指标危害很大,形成所谓的电力公害,这会使由同一电网供电的变压器、电动机、电容器等产生附加谐波损耗、过热、加速老化,引起异步电动机转矩降低,振动加剧噪声增大,引起继电器和自动装置误动作,其次谐波对通讯线路、测量仪器产生辐射*,影响电能计量的精度等第二.要考虑ups的输出能力与可靠性。输出功率因数、输出电流波峰系数、输出过载能力、输出不平衡负载的能力等指标,直接反映了ups的输出能力,同时也说明了ups输出能力的局限性和脆弱的一面,尽管在配置ups容量时尽可以使负载满足ups的要求,甚至留出很大的余量,但这些指标却直接反映了ups的可靠性。过载能力强,允许输出电流波峰系数高的,对负载功率因数限制小的,在同样电网环境和负载条件运行,其可靠性必然高。第三.要考虑效率与可靠性当ups的工作效率高时,意味着节省电能,这是绿色电源的标志之一。但还应该注意到效率与可靠性是密切相关的,效率高意味着电路技术先进,元器件选用得好,意味着功器件功率损耗小,功率强度小,温度低,这必然会增强元器件乃至整机的寿命和可靠性。 厂商在配置蓄电池时,所选用的设计容量是完全满足甚至超过负载不停电供电的功率容量和供电时间要求的,但是在ups投入运行后,用户常常发现在市电停电后ups不停电供电的实际时间远小于设计值,造成这种现象的原因,大多数情况下并不是初配置时蓄电池的备用容量不够,而是蓄电池的容量没有发挥出来。造成蓄电池实际容量降低的原因很多,有电池质量问题,但更多的是使用和维护问题(1)电池容量铅酸蓄电池的极板在制造过程中,对生极板进行充电化成,便正极板上的铅变成二氧化铅,负极板上的铅变为海绵状铅,但是制造厂商对极板进行化成的时间有限,不可能将所有的物质均转化成活性物质,为此,国家标准规定新电池达到90%容量为合格,只有在随后的日常使用中,容量逐渐达到正常值,安装两年后要求达到100%。电池组的额定容量是在规定的放电率下得出的,例如,ups电源中所用的小型蓄电池的典型规格之一是l2v、6ah/2ohv,此规格定义为输出直流电压l2v,标称容量为6ah,放电率条件为20hr。具体含意是:把输出直流电压l2v的电池组置于以20h恒放电率条件下进行放电,一直放到其输出电压由l2v降到l0.5v时,所测到的总安时数应为6ah。我国、日本、德国工业用电池采用10小时率(表示为c10),美国工业用电池标准为8小时率(表示为c8,)。在实际使用时,其放电率并不等于标准容量规定的放电率,当实际放电率大于标称容量规定的放电率时,其实际输出的容量要小于标称容量。我国电力、邮电标准规定,10小时率电池,当采用1小时率放电时,其容量为标称容量的55%,即0.55c10。日本工业标准规定2v/10小时率电池,1小时率时容量为0.65c10,6v、12v,10小时率电池,1小时率容量为0.6c10。20小时率电池,10小时率容量为0.93c20,1小时率容量为0.56c20。蓄电池的寿命有两种表达方法:一种为深循环使用的电池,另一种为浮充使用的'备用电源'电池。深循环使用的电池以深循环次数来表示其使用寿命,以0.8c10深度充放电循环使用的电池,其寿命达到1200次以上,而浮充使用的电池,年限可达到10~20年。蓄电池只有80%容量时认为寿命终止。实际使用寿命与设计使用寿命有很大差别,这主要取决于电池中水的损失情况。在设计条件下使用可达到设计寿命,而当外部条件如温度、充电电压、放电深度等变化超出设计要求时,实际使用寿命会大大低于设计寿命,实际使用容量也会低于设计容量。(2)放电率对电池实际可输出容量的影响电池容量c(ah)等于放电电流(a)与电池电压达到下限值的放电时间(h)的乘积,而放电率(1/h)是实际放电电流(a)与电池标称容量(ah)的比值。在ups的实际运行中,市电掉电后,要求电池逆变承担全部的负载功率,放电率视后备时间的不同而有很大差别,例如标机在1omin左右,维持时间很短,放电率很大,长延时机可达4h或8h,放电率很小。所以蓄电池的实际放电率并非蓄电池规格定义中的放电率,图5-1所示的放电曲线反映了不同的放电率对电池容量的影响。由图5-1中曲线可知,屯池的实际放电电流越小,电池的电压能维持的稳定时间越长,反之亦然。例如,对1oohr电池组而言,当放电电流为5a时,放电率为5c,其输出电压维持在12v以上的时间长达10h以上,当电池电压下降到临界电压10.5v时,放电时间可达2oh,电池释放的容量基本上是它的标称容量。若将放电电流增大至1ooa,放电率为1c,则输出电压维持在l2v以上的时间不到1omin。当电池电压下降到临界电压时,可维持放电时间超过3omin,实际放出的容量为左右,远低于标称容量1ooah。电池组允许的放电临界电压值和实际可供利用的容量(am都弓电池的放电电流大小有密切的关系。蓄电池所允许放电时间为电池在实际放电电流下进行放电时,电池电压从额定值下降到它所允许的临界电压时所用的时间。蓄电池可供使用的效率为它在实际放电电流下所能释放出的实际大容量与它的额定容量的比值。要注意在不同的放电率情况下,电池端电压下降的临界值也在变化,放电率低时,例如0.01c时,实际释放的容量接近标称容量,所允许的电池端电压下降也高(10.5v),放电率大时例如1c,实际释放的容量小,但允许的电池端电压也可以低些(8v)。过度的大电流放电工作方式是不利的。在为ups配置电池时,单凭ups在电池逆变期间所需要的输出电流和电池供电时间来配置所用电池的标称容量是不够的,还必须根据电池逆变时的放电率和所选电池规格的输出特性,适当增大所配电池容量。 理士蓄电池产品特性?理士蓄电池ft12-180实时报价长时间放电特性。适用于备用和储能电源使用。特殊的极板设计,循环使用寿命长。特殊的铅钙合金配方,增强了板栅的耐腐蚀性,延长了电池使用寿命。专用隔板增强了电池内部性能。热容量大,减少了热失控的风险,不易干涸,可在较恶劣的环境中使用。气体复合效率高。失水极少无电解液层化现象。贮存期较长。良好的深放电恢复性能。采用气相二氧化硅颗粒度小,比表面积大。自放电率极低,适应温度范围广。采用阀控式安全阀,使用安全、可靠。理士蓄电池ft12-180实时报价