采用填埋和焚烧处理废旧塑料的方法,虽然起到了一定的作用。但近几年,垃圾资源化的问题得到世界关注,怎样将有害垃圾(废旧塑料)变为有效资源,已成为国际上的热门研究课题。而采用填埋、焚烧这两种处理方法都会造成一定的资源浪费,于是人们又开发了废旧塑料再生利用新技术,以真正做到物尽其用,充分发挥塑料的所有利用能力和利用价值。
3.1 废旧塑料的直接利用
废旧塑料的直接利用系指不需进行各类改性,将废旧塑料经过清洗、破碎、塑化,直接加工成型,或与其他物质经简单加工制成有用制品。国内外均对该技术进行了大量研究,且制品已广泛应用于农业、渔业、建筑业、工业和日用品等领域[6]。例如,将废硬聚氨酯泡沫精细磨碎后加到手工调制的清洁糊中,可制成磨蚀剂;将废热固性塑料粉碎、研磨为细料,再以15%、30%的比例作为填充料掺加到新树脂中,则所得制品的物化性能无显著变化;废软聚氨酯泡沫破碎为所要求尺寸碎块,可用作包装的缓冲填科和地毯衬里料;粗糙、磨细的皮塑料用聚氨酯粘合剂粘合,可连续加工成为板材[7];把废塑料粉碎、造粒后可作为炼铁原料,以代替传统的焦炭,可大幅度减少二氧化碳的排放量[8]。
3.2 废旧塑料的改性利用废旧塑料直接再生利用的主要优点是工艺简单、再生品的成本低廉,其缺点是再生料制品力学性能下降较大,不宜制作高档次的制品。为了改善废旧塑料再生料的基本力学性能,满足专用制品的质量需求,研究人员采取了各种改性方法对废旧塑料进行改性,以达到或超过原塑料制品的性能。常用的改性方法有2种:一种是物理改性,另一种是化学改性。
3.2.1 物理改性采用物理方法对废旧塑料进行改性主要包括以下几个方面。
(1)活化无机粒子的填充改性:在废旧热塑性塑料中加入活化无机粒子,既可降低塑料制品的成本,又可提高温度性能,但加入量必须适当,并用性能较好的表面活性剂处理[9]。
(2)废旧塑料的增韧改性:通常使用具有柔性链的弹性体或共混性热塑性弹性体进行增韧改性,如将聚合物与橡胶、热塑性塑料、热固性树脂等进行共混或共聚。近年又出现了采用刚性粒子增韧改性,主要包括刚性有机粒子和刚性无机粒子。常用的刚性有机粒子有聚甲基丙烯酸甲酯(pmma)、聚苯乙烯(ps)等,常用的刚性无机粒子为caco3、baso4等[10]。
(3)增强改性:使用纤维进行增强改性是高分子复合材料领域中的开发热点,它可将通用型树脂改性成工程塑料和结构材料。回收的热塑性塑料(如pp、pvc、pe等)用纤维增强改性后其强度和模量可以超过原来的树脂。纤维增强改性具有较大发展前景,拓宽了再生利用废旧塑料的途径。
(4)回收塑料的合金化:2种或2种以上的聚合物在熔融状态下进行共混,形成的新材料即为聚合物合金,主要有单纯共混、接枝改性、增容、反应性增容、互穿网络聚合等方法[11]。合金化是塑料工业中的热点,是改善聚合物性能的重要途径。
3.2.2 化学改性
化学改性指通过接枝、共聚等方法在分子链中引入其他链节和功能基团,或是通过交联剂等进行交联,或是通过成核剂、发泡剂进行改性,使废旧塑料被赋予较高的抗冲击性能,优良的耐热性,抗老化性等,以便进行再生利用。目前国内在这方面已开展了较多的研究工作。廖兵[12]用废旧聚苯乙烯塑料制备了水泥减水增强剂。他将干燥的废旧聚苯乙烯塑料加入反应釜中,加人溶剂和改性剂在100℃反应5h,加水溶解,用氢氧化钙中和、过滤,即制成含量为10%的性能高效的改性废旧聚苯乙烯塑料减水增强剂。张向和等[13]用废旧热塑性塑料,按废塑料、混合溶剂、汽油、颜料、填料、助剂、改性树脂、树脂型增韧增塑剂的质量比(15—30)∶(50—60)∶适量∶(0—45)∶(3—10)∶(0.5—5)的比例生产出了防锈、防腐漆、各色萤光漆等中、高档漆。其性能优良,附着力好,抗冲击力强,成本约为正规同类涂料的一半,且设备简单。
郭金全等[14]根据聚氨酯(pu)合成配方的可变特点,利用玉米淀粉分子的多醇羟基参与pu合成过程游离异氰酸根(nco)的反应进行改性,合成了高性能的pu泡沫材料,实验结果表明,该材料具有高吸水功能和不削弱原泡沫的力学性能优点,同时因其成本低廉而具广泛的应用前景。陈毅峰等[15]以废旧聚苯乙烯泡沫塑料为原料,通过磺化改性,成功地合成了球团粘结剂,应用结果表明,该类粘结剂对造球和压团的湿态、干态和热态强度均表现出良好的效果,可替代常规的腐植酸钠、水玻璃及膨润土等粘结剂,具有较广阔的市场前景。用化学改性的方法把废旧塑料转化成高附加值的其他有用的材料,已成为当前废旧塑料回收技术研究的热门领域,相信近年内将会逐渐涌现出越来越多的研究成果。
3.3 废旧塑料分解产物的利用
3.3.1 废旧塑料的热分解
热分解技术的基本原理是,将废旧塑料制品中原树脂高聚物进行较彻底的大分子链分解,使其回到低分子量状态,而获得使用价值高的产品。不同品种塑料的热分解机理和热分解产物各不相同[16]。pe、pp的热分解以无规断链形式为主,热分解产物中几乎无相应的单体;ps的热分解同时伴有解聚和无规断链反应,热分解产物中有部分苯乙烯单体;pvc的热分解先是脱除氯化氢,再在更高温度下发生断链,形成烃类化合物。废塑料热分解工艺可分为高温分解和催化低温分解,前者一般在600—900℃的高温下进行,后者在低于450℃甚至在300℃的较低温度下进行,两者的分解产物不同。废塑料热分解使用的反应器有:塔式、炉式、槽式、管式炉、流化床和挤出机等[2]。该技术是对废旧塑料的较彻底的回收利用技术。高温裂解回收原料油的方法,由于需要在高温下进行反应,设备投资较大,回收成本高,并且在反应过程中有结焦现象,因此限制了它的应用。而催化低温分解由于在相对较低的温度下进行反应,因此研究较活跃,并取得了一定的进展。
3.3.2 废旧塑料的化学分解
化学分解是指废弃塑料的水解或醇解(乙醇解、甲醇解及乙二醇解等)过程,通过分解反应,可使塑料变成其单体或低相对分子质量物质,可重新成为高分子合成的原料[17]。化学分解产物均匀易控制,不需进行分离和纯化,生产设备投资少。但由于化学分解技术对废旧塑料预处理的清洁度、品种均匀性和分解时所用试剂有较高要求,因而不适合处理混杂型废旧塑料。目前化学分解主要用于聚氨酯、热塑性聚脂、聚酰胺等极性类废旧塑料[9]。
(待续)
