目前pcb的设计趋势之一就是提高佈线密度,欲达此种目标的方法有三种: 首先是缩减其线宽线距,使单位面积内可容纳更多更密集的佈线;其次是增加电路板层数;最后则是减小孔径及銲垫之尺寸。
然而,当单位面积内的线路愈佈愈多时,其工作温度势必会上升。再者,高精密多层电路板不断增加电路板层数之际,也势必使得完工板同步变厚。否则就只能搭配较薄的介质层进行压合,以维持原先的厚度。pcb愈厚者,其通孔壁因积热所造成的热应力将越形增加,进而使得z方向热胀效应变大。选用较薄的介质层时,则意味著必须使用胶含量较多的基板与胶片;但胶含量较多者,又会造成通孔z方向热胀量与应力的再增。此外,减小通孔之孔径,不免又使得纵横比变大;因此为确保镀通孔的可靠度,所用之基材就必须具备较低的热膨胀以及较佳的热稳定性,才不致功亏一篑。
除上述因素外,当电路板组装元件密度增加时,则其导通孔佈局亦将排列的更为紧密。但此举却会使得玻璃束漏电之情势更趋紧张,甚至在孔壁间的基材玻纤中发生桥接现象,进而导致短路。此种阳极性丝状漏电现象 (caf)正是目前无铅时代对板材关注的主题之一,当然新一带的基材必须具有更佳的抗caf能力,才不致于无铅焊接中状况频出。
深圳鼎纪电子有限公司
0755 27586790