模具材质非金属材料 | 模具类型成形模 |
模具性能变形抗力 | 模具用途冲裁 |
模具设计软件Autocad | 模具零件加工分流锥浇口套加工 |
模芯加工CNC粗加工 | 表面处理淬火 |
打样周期1-3天 | 加工周期1-3天 |
年生产能力年生产能力4560件 | 年剩余产能年剩余产能9352件 |
离心机历史发展
工业离心机诞生于欧洲,比如19世纪中叶,先后出现纺织品脱水用的三足式离心机,和制糖厂分离结晶砂糖用的上悬式离心机。这些***早的离心机都是间歇操作和人工排渣的。由于卸渣机构的改进,20世纪30年代出现了连续操作的离心机,间歇操作离心机也因实现了自动控制而得到发展。工业用离心机按结构和分离要求,可分为过滤离心机、沉降离心机和分离机三类。离心机有一个绕本身轴线高速旋转的圆筒,称为转鼓,通常由电动机驱动。悬浮液(或乳浊液)加入转鼓后,被迅速带动与转鼓同速旋转,在离心力作用下各组分分离,并分别排出。通常,转鼓转速越高,分离效果也越好。离心分离机的作用原理有离心过滤和离心沉降两种。离心过滤是使悬浮液在离心力场下产生的离心压力,作用在过滤介质上,使液体通过过滤介质成为滤液,而固体颗粒被截留在过滤介质表面,从而实现液-固分离;离心沉降是利用悬浮液(或乳浊液)密度不同的各组分在离心力场中迅速沉降分层的原理,实现液-固(或液-液)分离。还有一类实验分析用的分离机,可进行液体澄清和固体颗粒富集,或液-液分离,这类分离机有常压、真空、冷冻条件下操作的不同结构型式。衡量离心分离机分离性能的重要指标是分离因数。它表示被分离物料在转鼓内所受的离心力与其重力的比值,分离因数越大,通常分离也越迅速,分离效果越好。工决定离心分离机处理能力的另一因素是转鼓的工作面积,工作面积大处理能力也大。过滤离心机和沉降离心机,主要依靠加大转鼓直径来扩大转鼓圆周上的工作面;分离机除转鼓圆周壁外,还有附加工作面,如碟式分离机的室式分离机的内筒,显著增大了沉降工作面。此外,悬浮液中固体颗粒越细则分离越困难,滤液或分离液中带走的细颗粒会增加,在这种情况下,离心分离机需要有较高的分离因数才能有效地分离;悬浮液中液体粘度大时,分离速度减慢;悬浮液或乳浊液各组分的密度差大,对离心沉降有利,而悬浮液离心过滤则不要求各组分有密度差。选择离心分离机须根据悬浮液(或乳浊液)中固体颗粒的大小和浓度、固体与液体(或两种液体)的密度差、液体粘度、滤渣(或沉渣)的特性,以及分离的要求等进行综合分析,满足对滤渣(沉渣)含湿量和滤液(分离液)澄清度的要求,初步选择采用哪一类离心分离机。然后按处理量和对操作的自动化要求,确定离心机的类型和规格,***后经实际试验验证。通常,对于含有粒度大于0.01毫米颗粒的悬浮液,可选用过滤离心机;对于悬浮液中颗粒细小或可压缩变形的,则宜选用沉降离心机;对于悬浮液含固体量低、颗粒微小和对液体澄清度要求高时,应选用分离机。离心分离机未来的发展趋势将是强化分离性能、发展大型的离心分离机、改进卸渣机构、增加专用和组合转鼓离心机、加强分离理论研究和研究离心分离过程化控制技术等。强化分离性能包括提高转鼓转速;在离心分离过程中增加新的推动力;加快推渣速度;增大转鼓长度使离心沉降分离的时间延长等。发展大型的离心分离机,主要是加大转鼓直径和采用双面转鼓提高处理能力使处理单位体积物料的设备投资、能耗和维修费降低。理论研究方面,主要研究转鼓内流体流动状况和滤渣形成机理,研究分离度和处理能力的计算方法。
离心机中转子的种类及其用途的不同
离心机中的转子***常使用的主要有:
1、角转子,它是固定角度转子的简称。装放溶液的离心与转轴间的角度θ是转子制造时形成的,永远不能改变。在使用角转子时应该注意,离心管要受到强大离心场的作用,软质离心管在管子没有装满液体的情况下会塌陷。硬质离心管反复使用时会破裂。
2、甩开转子亦称摆平转子,离心管放置在吊篮里,吊篮是轴对称地挂在转子上。旋转时,吊篮受离心力而由垂直位置甩到水平位置,故也称为外摆动式转子和摆平吊篮转子等。在甩开转子应用时,等密度离心选用短粗离心管,速率区带离心选用细长离心管,它们是用制备离心机作分析的***通用技术。甩开转子在少数情况下也用于差速离心分离。由于甩开转子的半径-体积关系比较简单,易于形成等动力梯度,所以它是制备机测定沉降系数的主要方法。
3、垂直转子,该转子与其他转子相比,不仅缩短了离心时间,而且也获得了相当高的分辨率。在垂直角转子中,装放溶液的离心管在离心过程中保持垂直,即与旋转轴间的夹角为零度。该转子诞生于20世纪70年代,现在超速离心机和高速离心机大都配垂直转子,其应用很广泛。垂直转子梯度离心技术应用很广,它可以分离且检定各种组织成分。
离心机开孔转鼓设计计算分析
离心机转鼓是离心机的关键部件之一。一方面,转鼓的结构对离心机的用途、操作、生产能力和功率等均有决定性影响。另一方面,转鼓自身因高速旋转(其工作转速通常在每分钟几百转至每分钟几万转之间),受到了离心力的作用,在离心力作用下转鼓体内会产生很大的工作应力,一旦发生强度破坏,必将产生极大的危害,尤其是有时由于应力过高发生“崩裂”,常会引起严重人身伤害事故。同时,对于高速旋转的转鼓而言,转鼓的刚度同样非常重要。若转鼓的刚度不足,工作中转鼓的几何形状将会发生明显变化,轻则会出现转鼓与机壳撞击、摩擦,损坏零部件;重则同样会引起转鼓的爆裂,甚至出现人身伤害事故。多年来,由于转鼓设计不当、转鼓制造质量不高等原因导致重大事故的现象频频发生。这已引起了设计人员、制造厂家和使用部门的重视,经常进行三足式离心机事故原因的诊断、分析与研究。因此,对离心机转鼓设计计算的分析研究也是十分必要的。
1开孔转鼓设计计算的依据
转鼓强度计算的传统方法,是在以旋转薄壳无力矩理论为基础,并认为转鼓是完全弹性体,计算时能满足小位移假设和直法线假设,且转鼓壁厚s与转鼓半径r之比(s?r)小于011,转鼓高度h≥215rs的情况下导出的。在进行转鼓应力计算时,主要考虑了由转鼓体自身质量、转鼓内的筛网质量以及物料质量因高速旋转所产生的离心力作用下的应力。
2对转鼓设计中存在问题的分析
2.1转鼓设计中强度计算的近似性
转鼓设计中强度计算的近似性主要表现在以下几方面:
(1)强度计算的公式是以无力矩理论为基础,并按照薄壁压力容器而推导出来的。这些计算公式的适应范围只有在转鼓体离开挡液板和转鼓底适当远的部位才是成立的[2]。如果用上述计算公式的计算结果作为转鼓各部位强度计算的依据,显然存在着来源于计算公式的近似性。
(2)转鼓体上因有开孔,不仅削弱了转鼓体的强度,同时在开孔处也引起了应力集中。在公式中靠引入几个系数(如k2、k3、q等)来考虑应力集中等问题显然也存在着计算过程的近似性。
(3)转鼓体与挡液板、转鼓底的连接处应力集中现象比较严重,而实际的计算方法中,则是在初步结构设计的基础上经过适当简化后再进行二次强度计算,不仅计算公式繁琐,而且因简化计算模型,其计算过程与结果本身也存在着近似性。
因此,按目前采用的离心机开孔转鼓设计计算方法设计的离心机转鼓,从宏观上看,往往偏于保守,相关尺寸有较大富裕,使得转鼓质量增加,既增加了转鼓运行的能耗也造成了材料的浪费,显然是不经济的;从微观上看,局部地方(如转鼓体与挡液板、转鼓底的连接处,转鼓体的开孔处)的应力值往往得不到正确估计,直接影响到转鼓运行的安全性。在离心机发生的转鼓破裂事故中,出现在开孔处和边缘处的比例很高。
无锡核新元过滤设备有限公司
谢先生
17092068597
广东 广州 荔湾区